WldS and PGC-1α regulate mitochondrial transport and oxidation state after axonal injury.

نویسندگان

  • Kelley C O'Donnell
  • Mauricio E Vargas
  • Alvaro Sagasti
چکیده

Mitochondria carry out many of the processes implicated in maintaining axon health or causing axon degeneration, including ATP and reactive oxygen species (ROS) generation, as well as calcium buffering and protease activation. Defects in mitochondrial function and transport are common in axon degeneration, but how changes in specific mitochondrial properties relate to degeneration is not well understood. Using cutaneous sensory neurons of living larval zebrafish as a model, we examined the role of mitochondria in axon degeneration by monitoring mitochondrial morphology, transport, and redox state before and after laser axotomy. Mitochondrial transport terminated locally after injury in wild-type axons, an effect that was moderately attenuated by expressing the axon-protective fusion protein Wallerian degeneration slow (WldS). However, mitochondrial transport arrest eventually occurred in WldS-protected axons, indicating that later in the lag phase, mitochondrial transport is not required for axon protection. By contrast, the redox-sensitive biosensor roGFP2 was rapidly oxidized in the mitochondrial matrix after injury, and WldS expression prevented this effect, suggesting that stabilization of ROS production may mediate axon protection. Overexpression of PGC-1α, a transcriptional coactivator with roles in both mitochondrial biogenesis and ROS detoxification, dramatically increased mitochondrial density, attenuated roGFP2 oxidation, and delayed Wallerian degeneration. Collectively, these results indicate that mitochondrial oxidation state is a more reliable indicator of axon vulnerability to degeneration than mitochondrial motility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1 α–NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats

OBJECTIVE To test the hypothesis that salidroside (SAL) can protect heart from exhaustive exercise-induced injury by enhancing mitochondrial respiratory function and mitochondrial biogenesis key signaling pathway PGC-1α-NRF1/NRF2 in rats. METHODS Male Sprague-Dawley rats were divided into 4 groups: sedentary (C), exhaustive exercise (EE), low-dose SAL (LS), and high-dose SAL (HS). After one-t...

متن کامل

The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues

PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, β-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular re...

متن کامل

Regulation of Brown and White Adipocyte Transcriptome by the Transcriptional Coactivator NT-PGC-1α

The β3-adrenergic receptor (AR) signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β3-AR signaling highly induces the expression of transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, which in turn activate the transcription program of adaptive thermogenesis by co-activating a number of tr...

متن کامل

SIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats

Silent information regulator 1 (SIRT1) exerts neuroprotection in many neurodegenerative diseases. However, it is not clear if SIRT1 has protective effects after intracerebral hemorrhage (ICH)-induced brain injury in rats. Thus, our goal was to examine the influence of SIRT1 on ICH injuries and any underlying mechanisms of this influence. Brain injury was induced by autologous arterial blood (60...

متن کامل

EFFECT OF 6 WEEKS ENDURANCE TRAINING WITH QUERCETIN SUPPLEMENTATION ON THE EXPRESSION OF MITOCHONDRIAL PGC-1Α AND ATF2 GENES IN THE HIPPOCAMPUS OF DIABETIC MALE RATS

Background & Aims: Hyperglycemia causes disorders of cardiovascular system, kidneys, retina, lens of the eyes, skin, and central and peripheral nervous system. Since two indicators PGC-1α and Atf2 are involved in mitochondrial biogenesis, therefore, this study was designed and implemented to evaluate the effect of 6 weeks’ endurance training with quercetin supplementation on the expression of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 37  شماره 

صفحات  -

تاریخ انتشار 2013